Name \qquad
Date \qquad Per \qquad

Spiral Review

1. Find a counter example to show that the statement is not true. If angles are supplementary then they form a linear pair.
2. Find the coordinates of the point $\frac{7}{10}$ of the way from A to B.

3. Consider the statement: If James has 2 dimes, then he has at least 20 cents.
a. Is this a true statement? Justify your reasoning.
b. Write the converse of the given statement. Is the converse a true statement? Explain.
4. Find the value of the variable.

Properties of Parallel Lines

Section: Properties of Parallel Lines

Use the figure to answer each question in this section.
5. If $c\|d, a\| b$, and $m \angle 12=55^{\circ}$, then $m \angle 4=$ \qquad
6. If $\angle 15 \cong \angle 8$ then which two lines are parallel? Explain your answer.
7. Find the value of x.

8. Use the figure to the right. Lines a, b, c, and d intersect as shown.
a. Which pairs of lines are parallel?
b. Find the values of the variables.

$$
\mathrm{a}=\ldots \mathrm{b}=\ldots \quad \mathrm{c}=\ldots
$$

$\mathrm{f}=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad $\mathrm{z}=$ \qquad

9. Find the value of the variable that will make the lines parallel.

Section: Parallel Lines and the Triangle Sum - Theorem

10. Find the value of the variable.

11. Given the figure, find the value of the variables.

12. Find the value of x.

Section: Slopes of Parallel and Perpendicular Lines.

13. Are the lines, parallel, perpendicular, or neither? $\quad y=\frac{2}{3} x+5$

$$
3 x+2 y=8
$$

14. Write an equation (slope-intercept form) for the line that is parallel to $y=-4 x+5$ that contains the point $(1,-6)$
15. Write an equation (slope-intercept form) for the line that is perpendicular to $y=3 x-2$ and passes through the point $(9,-2)$
16. Given the following figure, find which lines will be parallel and perpendicular. Verify using slopes.

Section: Proofs

$$
\begin{aligned}
& \text { GIVEN } \angle 1 \cong \angle 2, \angle 3 \cong \angle 4 \\
& \text { PROVE } \frac{\angle 1}{A B} \| \overline{C D}
\end{aligned}
$$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

```
GIVEN \(>a \| b, \angle 2 \cong \angle 3\)
PROVE \(\bullet c \| d\)
```


Statement	Reason
1.	1.
$2 . \angle 1 \cong \angle 3$	2.
3.	3. Substitution Property
4.	4.

Given: $m \| n$ and $a \| b$
Prove $\angle 4$ is supplementary $\angle 15$

Statement	Reason
1.	1.
$2 . \angle 4 \cong \angle 10$	2.
$3 . \angle 10$ and $\angle 15$ are supplementray	3.
4.	4. Definition of Supplementary Angles
$5 . \angle 4=\angle 10$	5.
6.	6. Substitution Property
7.	7.

