Geometry	Name	
Chapter 2 Review	Date	Per

Spiral Review

1. Find a counter example to show that the statement is not true. If angles are supplementary then they form a linear pair.

2. Find the coordinates of the point $\frac{7}{10}$ of the way from A to B.

- 3. Consider the statement: If James has 2 dimes, then he has at least 20 cents.a. Is this a true statement? Justify your reasoning.
 - b. Write the converse of the given statement. Is the converse a true statement? Explain.
- 4. Find the value of the variable.

Properties of Parallel Lines

Section: Properties of Parallel Lines

Use the figure to answer each question in this section. 5. If $c \parallel d, a \parallel b$, and $m \angle 12 = 55^\circ$, then $m \angle 4 =$ _____

- 6. If $\angle 15 \cong \angle 8$ then which two lines are parallel? Explain your answer.
- 7. Find the value of x.

- 8. Use the figure to the right. Lines *a*, *b*, *c*, and *d* intersect as shown.
 - a. Which pairs of lines are parallel?
 - b. Find the values of the variables.

9. Find the value of the variable that will make the lines parallel.

Section: Parallel Lines and the Triangle Sum – Theorem

10. Find the value of the variable.

11. Given the figure, find the value of the variables.

12. Find the value of x.

Section: Slopes of Parallel and Perpendicular Lines.

13. Are the lines, parallel, perpendicular, or neither?

$$y = \frac{2}{3}x + 5$$
$$3x + 2y = 8$$

14. Write an equation (slope-intercept form) for the line that is parallel to y = -4x + 5 that contains the point (1, -6)

- 15. Write an equation (slope-intercept form) for the line that is perpendicular to y = 3x 2 and passes through the point (9, -2)
- 16. Given the following figure, find which lines will be parallel and perpendicular. Verify using slopes.

Section: Proofs

GIVEN $\blacktriangleright \angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ **PROVE** $\blacktriangleright \overline{AB} \parallel \overline{CD}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

GIVEN $\blacktriangleright a \parallel b, \angle 2 \cong \angle 3$ prove $\triangleright c \parallel d$

Statement	Reason
1.	1.
$2. \angle 1 \cong \angle 3$	2.
3.	3. Substitution Property
4.	4.

Given: $m \parallel n$ and $a \parallel b$ Prove $\angle 4$ is supplementary $\angle 15$

Statement	Reason	
1.	1.	
$2. \angle 4 \cong \angle 10$	2.	
3. ∠10and ∠15 are supplementray	3.	
4.	4. Definition of Supplementary Angles	
$5. \angle 4 = \angle 10$	5.	
6.	6. Substitution Property	
7.	7.	